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The nonlinear stability of two-phase core-annular flow in a cylindrical pipe is studied.
A constant pressure gradient drives the flow of two immiscible liquids of different
viscosities and equal densities, and surface tension acts at the interface separating
the phases. Insoluble surfactants are included, and we assess their effect on the flow
stability and ensuing spatio-temporal dynamics. We achieve this by developing an
asymptotic analysis in the limit of a thin annular layer – which is usually the relevant
regime in applications – to derive a coupled system of nonlinear evolution equations
that govern the dynamics of the interface and the local surfactant concentration on it.
In the absence of surfactants the system reduces to the Kuramoto–Sivashinsky (KS)
equation, and its modifications due to viscosity stratification (present when the phases
have unequal viscosities) are derived elsewhere. We report on extensive numerical
experiments to evaluate the effect of surfactants on KS dynamics (including chaotic
states, for example), in both the absence and the presence of viscosity stratification.
We find that chaos is suppressed in the absence of viscosity differences and that the
new flow consists of successive windows (in parameter space) of steady-state travelling
waves separated by time-periodic attractors. The intricate structure of the travelling
pulses is also explained physically. When viscosity stratification is present we observe
a transition from time-periodic dynamics, for instance, to steady-state travelling wave
pulses of increasing amplitudes and speeds. Numerical evidence is presented that
indicates that the transition occurs through a reverse Feigenbaum cascade in phase
space.

1. Introduction
The simplest form of a core-annular flow (CAF) is a parallel flow consisting of a

liquid moving through the tube core of a cylindrical pipe, surrounded by an annular
ring of a second immiscible liquid. When an axial pressure gradient is present in a
horizontal tube and gravity is absent (or when the tube is vertical in the presence of
gravity), there exists an exact parallel flow solution of the Navier–Stokes equations,
with the interface separating the two phases circular and concentric with the tube wall.
This exact solution is susceptible to instabilities that can produce complex spatio-
temporal dynamics of the interface such as interfacial turbulence at zero Reynolds
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numbers, in addition to topological transitions leading to other flow regimes such
as slug or emulsion flows (see Joseph & Renardy 1993). Besides their fundamental
physical and mathematical interest, CAFs arise in a host of technological applications
including lubricated pipelining (Joseph & Renardy 1993), liquid–liquid displacements
in the presence of a wall-wetting layer in porous media (Park & Homsy 1984),
secondary oil recovery (Slattery 1994) and fluid dynamics in the lung (Otis et al. 1993).

The flow stability is determined by a competition between capillary forces and effects
arising from viscosity and density differences. (The latter are excluded in the present
study.) The familiar scenario of the destabilization of cylindrical threads to long
waves by the circumferential contribution of the capillary forces has been established
in non-flowing viscous threads surrounded by a second immiscible liquid (Tomotika
1935) and in a stationary annular film on the outside surface of a cylinder (Goren
1962). When flow is present the situation is more involved. The paradigm example is
that of the stability of Couette–Poiseuille two-phase flow between parallel plates first
analysed by Yih (1967). Yih (1967) performed a long-wave stability analysis and found
that instability is possible if the two fluids have different viscosities. Furthermore, it
was found that for thin layers the flow is stable if the less viscous liquid occupies
the thinner layer and unstable in the reverse regime. It is worth emphasizing that the
instability is present at any Reynolds number, however small, and disappears as the
Reynolds number vanishes; that is flow is a necessary condition for its manifestation
in contrast to capillary instability. In addition, an interfacial deflection is necessary –
planar interfaces are stable; physically, a deflection introduces a velocity perturbation
due to the differences in viscosity of the two phases, and these perturbations drive
the flow in their respective regions (see § 3 also). For a mechanism of the instability
the reader is referred to Charru & Hinch (2000).

In CAF arrangements, it was shown by Hickox (1971) using a long-wave theory
as in Yih (1967) that instability to axisymmetric and non-axisymmetric disturbances
arises even in the absence of capillarity (but in the presence of flow) when the
annular fluid is more viscous. A more complete numerical study based on the Orr–
Sommerfeld equation was performed by Preziosi, Chen & Joseph (1989). The main
finding is the existence of a range of Reynolds numbers for which the flow is stable
for all wavenumbers; that is the viscosity differences act to completely suppress the
capillary instability. Such findings were also established in the study of Georgiou et al.
(1992) who considered the physically relevant limit of thin annuli and performed an
asymptotic analysis in the presence of surface tension, viscosity differences and gravity
in a vertical tube arrangement. It is interesting to note that density differences provide
dispersive effects alone in this limit.

Nonlinear asymptotic theories for thin annuli have been carried out in both the
absence and the presence of flow. In the former case Hammond (1983) derives and
studies a nonlinear evolution equation that contains the competing effects of surface
tension and nonlinearity and is capable of deformations of the order of the annular
thickness. Thus, the model can predict the rupture of the annular layer but not the
the snap-off of the core. The problem was addressed numerically in the Stokes regime
by Newhouse & Pozrikidis (1992) who verified Hammond’s (1983) predictions and
also presented solutions with snap-off of the core for sufficiently thick annuli. The
effect of insoluble surfactants on such models have been included by Otis et al. (1990,
1993) as well as Halpern & Grotberg (1993), and produce decreased growth rates as
determined by linear instability. More complete linear stability studies of surfactant
effects on CAF arrangements can be found in Kwak & Pozrikidis (2001) for quiescent
fluids and Kwak, Fyrillas & Pozrikidis (2001) for liquid threads in extensional flow.
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The linear stability studies of surfactant-laden liquid threads by Hansen, Peters &
Meijer (1999) and Timmermans & Lister (2002) are also of interest as well as the
nonlinear models and calculations of Craster, Matar & Papageorgiou (2002).

In the presence of flow the stability of CAFs is more involved. In general, consistent
asymptotic theories for thin annuli can be developed when the interfacial amplitude
is in the weakly nonlinear regime. (An exception is Kerchman 1995 who allows
disturbances scaled on the annulus but requires asymptotically small shear in the
film.) In the absence of viscosity differences Frenkel et al. (1987) derive a Kuramoto–
Sivashinsky (KS) equation for the spatio-temporal evolution and argue that capillary
instability is saturated nonlinearly. Papageorgiou, Maldarelli & Rumschitzki (1990)
have shown that when viscosity differences are present (as in lubricated pipelining for
example), there is a coupling between the film and core dynamics with the solutions
of the Stokes or linearized Navier–Stokes equations in the core required to close the
problem. The evolution is governed by a generalized KS equation which contains a
linear non-local pseudo-differential operator which can be purely dispersive (Stokes
limit) or provide both dispersion and growth of wavy disturbances. Papageorgiou
et al. (1990) carried out numerical experiments that show that in general the viscosity
difference acts to regularize the interfacial dynamics into trains of travelling wave
pulses – there are regimes in which more complex behaviour is seen, however. More
detailed computational studies of the KS equation with emphasis placed on transitions
to chaotic interfacial dynamics can be found in Papageorgiou & Smyrlis (1991) and
Smyrlis & Papageorgiou (1991, 1996). A more detailed study of the non-local equation
and a numerical comparison of its solutions with a local model that retains the first
two terms in a long-wave expansion of the pseudo-differential operator has been
carried out by Smyrlis & Papageorgiou (1998), who showed that the differences in
identifiable attractors such as travelling or time-periodic travelling wave regimes are
almost unidentifiable.

The problem of CAFs in the presence of flow and surfactants has not received much
attention. Of relevance to the present work are the studies of Wei & Rumschitzki
(2005) and Blyth, Luo & Pozrikidis (2006). The former work presents a detailed
linear stability study based on the asymptotic expansion of solutions in the limit
of thin annuli. The stability is reduced to that of a coupled constant coefficient
linear system for the interfacial and surfactant perturbations, in the limit that the
core dynamics decouple from those of the film. Extensive results are presented that
emphasize important differences between the clean and surfactant-laden cases. Similar
results are found by Blyth et al. (2006) who note that the presence of surfactant in
CAFs does not initiate any additional unstable modes compared to the clean case,
in contrast to such phenomena in two-dimensional plane channel flows as studied by
Frenkel & Halpern (2002), Halpern & Frenkel (2003) and Blyth & Pozrikidis (2004).
(Note that the last of these studies also carried out direct numerical simulations in
the Stokes limit.) The study of Blyth et al. (2006) also follows the instability into the
nonlinear regime by use of the immersed boundary method for the Navier–Stokes
equations. The computations presented there are not in the thin annulus regime –
two sets are presented, having a ratio of undisturbed core radius to tube radius of
0.75 and 0.25, respectively. In the former case numerical evidence is shown with the
interface evolving into multi-valued configurations, while in the latter case (the core
is now relatively thin) the evolution tends to core-rupture together with thin thread
regions in the vicinity of the rupture points in situations in which the core is less
viscous than the film (a linearly unstable configuration according to the analysis of
Hickox 1971).
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The results of Blyth et al. (2006) exhibit complicated dynamical scenarios, and the
parameter space is too large for direct simulations to achieve the detail afforded by
model equations as in the present work. We consider thin annuli and carry out an
asymptotic analysis that is structured so as to retain nonlinearity in the leading-order
evolution. The technical difficulty arises in the coupling between the interfacial and
surfactant perturbation evolutions; this necessitates the identification of canonical
asymptotic regimes that allow nonlinearity to enter in a Galilean frame fixed to
the unperturbed interfacial velocity. This is apparently straightforward in the clean
case, but in the presence of surfactants the initial surfactant concentration needs to
be chosen accordingly in order to retain nonlinearity. (Any other choice of initial
surfactant distribution merely reproduces the linear system of Wei & Rumschitzki
2005.) Our analysis produces canonical evolution equations valid for a wide range of
parameters. The resulting system couples the generalized KS equation of Papageorgiou
et al. (1990) with a convection–diffusion equation for the surfactant, and all of our
numerical evidence indicates that the system most likely possesses global existence of
solutions. A proof of this is still missing.

The structure of the rest of the paper is as follows: § 2 presents the fully nonlinear
non-dimensional problem and introduces the various dimensionless groups. Section 3
is devoted to the asymptotic derivation of the evolution equations and a careful
explanation of the scalings involved in producing nonlinear dynamics. Section 4
gives a canonical rescaling for the system along with linear stability properties, while
§ 5 describes our numerical methods to solve the system as a periodic initial-value
problem. Section 6 contains our results for an exhaustive range of parameters. We
close with our conclusions in § 7.

2. Mathematical model and governing equations
Our problem consists of an annular liquid film (fluid 2), surrounding an infinitely

long cylindrical fluid core (fluid 1). Fluid 1 has viscosity μ1 and occupies the core
region 0 � r < S(z, t), while fluid 2 has viscosity μ2 and occupies the annular region
S(z, t) < r < R2, where R2 is the tube radius and S(z, t) is the interface. The fluid
densities are assumed to be equal and are denoted by ρ, and the undisturbed state is
given by S(z, t) = R1. Throughout this work we assume that the flows and geometry
are axisymmetric. For horizontal tubes, this is a reasonable approximation when the
Bond number B0 = ρgR2

2/σ � 1, and this is assumed here (see Hammond 1983).
In the case of vertical tubes, gravitational effects can be easily incorporated into the
present analysis, but we do not pursue this here.

We introduce cylindrical polar coordinates x = (r, θ, z) with associated velocity
components u1 = (u1, 0, w1) for the fluid core and u2 = (u2, 0, w2) for the fluid film
and denote pressures in the core and film region by p1 and p2, respectively. The flow
in regions 1 and 2 are governed by the incompressible Navier–Stokes equations

ρ (uit + uiuir + wiuiz) = −pir + μi

(
∇2ui − ui

r2

)
, (2.1)

ρ (wit + uiwir + wiwiz) = −piz + μi∇2wi, (2.2)

1

r
(rui)r + wiz = 0, (2.3)

where the subscript i = 1, 2 refers to the particular flow region, and letter subscripts
t, r, z denote partial derivatives. The Laplacian in cylindrical coordinates is ∇2 ≡
(1/r)(∂/∂r)(r∂/∂r) + (∂2/∂z2).
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The boundary conditions are those of no-slip at the wall and continuity of velocities
at the interface. In addition we impose the usual kinematic condition at the interface.
In terms of the aforementioned variables, these boundary conditions are

u2(R2, z, t) = w2(R2, z, t) = 0, (2.4)

u1(S, z, t) = u2(S, z, t), w1(S, z, t) = w2(S, z, t), (2.5)

ui(S, z, t) = St + wi(S, z, t)Sz. (2.6)

The normal and tangential balances are given by[
−pi +

2μi

1 + (S ′)2

(
(S ′)2

∂wi

∂z
− S ′

(
∂ui

∂z
+

∂wi

∂r

)
+

∂ui

∂r

)]2

1

=
σ (Γ )

S
√

1 + (S ′)2

{
1 − SS ′′

1 + (S ′)2

}
, (2.7)

[
μi

1 + (S ′)2

(
2S ′

(
∂u

∂r
− ∂w

∂z

)
+ (1 − (S ′)2)

(
∂u

∂z
+

∂w

∂r

))]2

1

=
−1√

1 + (S ′)2

∂σ

∂z
, (2.8)

where we have employed the notation [fi]
2
1 = f2 − f1. The last term in (2.8) represents

the tangential stress (Marangoni force) which results from the dependence of the
interfacial tension σ on the non-uniform surfactant concentration Γ (z, t). The
presence of surfactant generally acts to lower interfacial tension, owing to the repulsion
of the polar surfactant molecules. The precise nature of the dependence of surface
tension on Γ is given by an equation of state of the form σ = σ (Γ ). If the surfactant
is present in dilute concentration, a linear relation between σ and Γ may be assumed,
i.e.

σ = σ0(1 − βΓ/Γ∞), (2.9)

where Γ∞ is the maximum packing concentration of surfactant and β = RT Γ∞/σ0,
where R is the gas constant and T is the absolute temperature. Note that β determines
the sensitivity of interfacial tension to changes in surfactant concentration.

A convection–diffusion equation for surfactant transport is derived in Wong,
Rumschitzki & Maldarelli (1996); in Cartesian coordinates this equation takes the
form

∂Γ

∂t
− ∂x

∂t
· ∇sΓ + ∇s(Γ ws) − Ds∇2

sΓ + Γ κu · n = 0, (2.10)

where x is the position vector of the interface; ws is the surface velocity at the
interface; Ds is the constant interfacial surfactant diffusivity; κ is the curvature of
the interface taken positive for convex surface shapes; and n is the unit normal
vector directed outward from the core region 1. The notation ∇s refers to the surface
gradient operator. Equation (2.10) is easily rewritten in cylindrical–polar coordinates
and takes the form (see Kas-Danouche 2002)

∂Γ

∂t
− StS

′

1 + (S ′)2
∂Γ

∂z
+

1

S
√

1 + (S ′)2

{
∂

∂z

[
SΓ√

1 + (S ′)2
(w + S ′u)

]}

− Ds

1

S
√

1 + (S ′)2

∂

∂z

(
S√

1 + (S ′)2

∂Γ

∂z

)

+
Γ

S(1 + (S ′)2)

[
1 − SS ′′

1 + (S ′)2

]
(−S ′w + u) = 0. (2.11)
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Here, a prime denotes differentiation with respect to z.

2.1. Non-dimensionalization

The preceeding problem can be recast in terms of non-dimensional quantities if lengths
are rescaled by the undisturbed core radius R1, velocities by the base-flow centreline
velocity W0, time by R1/W0, interfacial tension by the clean surface tension σ0 and
pressure by ρW 2

0 . The resulting equations are now listed using the same notation for
non-dimensional as for dimensional variables. (The dimensionless groups that appear
are defined in (2.21).)

The dimensionless Navier–Stokes equations and no-slip conditions are

(ui)t + ui(ui)r + wi(ui)z = −(pi)r +
1

Rei

[
∇2ui − ui

r2

]
, (2.12)

(wi)t + ui(wi)r + wi(wi)z = −(pi)z +
1

Rei

∇2wi, (2.13)

(ui)r +
1

r
ui + (wi)z = 0, (2.14)

where i = 1, 2 for core and film respectively, and

u2 = w2 = 0 at r =
R2

R1

, (2.15)

u1 = u2, w1 = w2 on r = S(z, t).

The surfactant transport equation takes the form

∂Γ

∂t
− StS

′

1 + (S ′)2
∂Γ

∂z
+

1

S
√

1 + (S ′)2

{
∂

∂z

[
SΓ√

1 + (S ′)2
(w + S ′u)

]}

− 1

Pe

1

S
√

1 + (S ′)2

∂

∂z

(
S√

1 + (S ′)2

∂Γ

∂z

)

+
Γ

S(1 + (S ′)2)

[
1 − SS ′′

1 + (S ′)2

]
(−S ′w + u) = 0. (2.16)

The normal stress balance is given by[
p(1 + (S ′)2) − 2

Rei

[(S ′)2wz − S ′(uz + wr ) + ur ]

]2

1

=
J (1 − βΓ )

Re2
1

{
S ′′ − 1

S
[1 + (S ′)2]

}
[1 + (S ′)2]− 1

2 , (2.17)

while the tangential stress balance becomes

[mi[2S ′(ur − wz) + [1 − (S ′)2](uz + wr )]]
2
1 =

βΓz

Ca

[1 + (S ′)2]
1
2 , (2.18)

where m1 = 1 and m2 = m.
Finally, the kinematic condition reads

u =
∂S

∂t
+ w

∂S

∂z
= St + wS ′. (2.19)

Note that (2.16)–(2.19) are evaluated at the interface r = S(z, t).
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The non-dimensional groups appearing above are defined by

Rei =
ρW0R1

μi

, Pe =
W0R1

Ds

, a =
R2

R1

, J =
ρσ0R1

μ2
1

,

(2.20)

m =
μ2

μ1

, Ca =
μ1W0

σ0

, Ma =
β

Ca

,

where

W0 =
F

4μ1μ2

[
(μ2 − μ1)R

2
1 + μ1R

2
2

]
(2.21)

is the dimensionless centreline velocity and ∇p = −F ẑ, F > 0, in the undisturbed
state. We introduce the parameter ε > 0 defined by

ε = a − 1, (2.22)

where a is the ratio of tube to undisturbed core radius given in (2.21); ε is a measure of
the thickness of the annulus; and the thin annular limit is obtained when ε � 1. The
parameter Ma is the Marangoni number which plays an important role in applications
(see Wei & Rumschitzki 2005).

When the driving force is a constant pressure gradient, it is easily seen that an
exact steady solution to (2.12)–(2.19) is S = 1, Γ = Γ0 and pz = −FR1/ρW 2

0 , and
velocities and pressures are given by

w1 = 1 − mr2

a2 + m − 1
, 0 � r � 1, (2.23)

w2 = − r2 − a2

a2 + m − 1
, 1 � r � a, (2.24)

p2 − p1 = −J (1 − βΓ0)

Re2
1

. (2.25)

Overbars are used to denote the base-state velocities and pressures. We express the
interface as

S(z, t) = 1 + δ1(ε)H (z, t), (2.26)

with H of order one and δ1 � 1; for later reference note that

w2|r=1+δ1H
=

(2 + ε)ε

m + 2ε + ε2
− 2δ1H + δ2

1H
2

m + 2ε + ε2
≡ wc + w2H .

Here wc is the constant part of the base-state velocity at the interface and w2H is the
part induced by the interfacial deformation H . Similarly, w1 = wc + w1H , where

w1H |r=1+δ1H
= −2mδ1H + mδ2

1H
2

m + 2ε + ε2
. (2.27)

The stated nonlinear time-dependent problem must in general be addressed by
direct numerical simulations. However, this is not an easy task due to the moving
interface and the large number of physical parameters (see the six dimensionless
groups in (2.20)). In what follows we make analytical progress by exploring possible
canonical asymptotic regimes when δ1 and ε are small numbers. Physically, this
corresponds to the thin annulus limit which is of practical interest in applications.
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3. Derivation of the evolution equations
3.1. Scalings

Due to the large number of parameters, it is essential to identify the physical limits
which asymptotic analyses may be able to describe. Throughout this work capillarity is
important, so that flows are driven to the leading order by the surface-tension-induced
pressure jump across the interface. We will also be concerned with canonical limits
that incorporate nonlinear effects; asymptotic limits that lead to linear equations are
discussed in Wei & Rumschitzki (2005). Where possible, we will couple the dynamics
of the film with the core. Lastly, we will be concerned with the weakly nonlinear
evolution of the interface so that the interfacial amplitude is asymptotically smaller
than the undisturbed annular layer thickness, i.e. δ1 � ε. For the cylindrical shear
flow considered here linear growth saturates in this regime (Papageorgiou et al. 1990).
The fully nonlinear regime with δ1 ∼ ε can occur in the no-flow case and is considered
in Hammond (1983) and Halpern & Grotberg (1993).

We begin the analysis by assuming the interface position is given by (2.26) and the
surfactant concentration by

Γ (z, t) = Γ0 + δ2(ε) Γ̃ (z, t), (3.1)

with δ2 to be determined. The parameter Γ0 is small, in view of the assumption of a
dilute surfactant concentration (see (2.9)).

In the film (region 2), we introduce a local variable r = a −εy (with y being zero at
the pipe wall and 1 − δ1H (z, t)/ε at the interface). It is convenient to decompose all
variables (pressure, velocity and the like) into a sum of a base state and a perturbed
quantity, e.g. pi = pi + p̃i for i = 1, 2, where the overbar denotes the base state, and
the tilde denotes a perturbation from this state. Rescaling the continuity equation
(2.14) using the new local film variable y and balancing terms for small ε immediately
leads to the scaling

ũ2 ∼ εw̃2 (3.2)

in the film, whereas ũ1 ∼ w̃1 in the core. The pressures can be estimated using
the normal stress balance equation (2.17) along with (3.1). This leads to p1 − p2 =
J (1 − βΓ0)/R

2
e1 and

p̃2 − p̃1 + O(δ1w̃2) =
J (1 − βΓ0)

R2
e1

δ1(H + Hzz) +
J

R2
e1

βδ2Γ̃ + O
(
δ2
1, δ1δ2

)
. (3.3)

Note that the second term on the right-hand side involving Γ̃ is due to surfactant-
induced surface tension variations; since β � 1 by assumption, these variations
compete with the curvature terms only if δ1 ∼ βδ2. Either way, we are led to the
following magnitudes for the perturbation pressures:

p̃1,2 ∼ Jδ1

R2
e1

=
δ1

CaRe1

, (3.4)

the last equality following from (2.20). Considering the momentum equations
(2.12) and (2.13) in region 2, the leading-order balance produces the lubrication
approximation p̃2y = 0 and

−p̃2z +
1

ε2Re2

w̃2yy = 0. (3.5)
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Equations (3.2), (3.4) and (3.5) and the fact that Re1 = mRe2 are used to obtain the
estimates

w̃2 ∼ ε2δ1

mCa

, ũ2 ∼ ε3δ1

mCa

. (3.6)

Next, we identify the leading-order terms in the tangential stress balance equation
(2.18). The perturbation velocities w̃1, ũ1 in the core enter at the leading order, and
since w̃1 ∼ ũ1 it is sufficient to estimate w̃1. The main contribution comes from the
viscosity difference and the shear base flow in the vicinity of the interface. Equations
(2.23) and (2.24) imply

(w1 − w2) |r=1+δ1H=
2(1 − m)δ1H

m
+ O

(
δ2
1, δ1ε

)
. (3.7)

This velocity jump, which disappears when the viscosities are equal (m = 1), fixes the
perturbation velocities in the core,

w̃1 ∼ ũ1 ∼ δ1

m
. (3.8)

The velocity scales (3.6) and (3.8) now determine the core perturbation pressure to be
p̃1 = O(δ1/m). Considering the tangential stress balance (2.18) we see that the largest
film contribution is of order mw̃2/ε (on use of (3.6) this becomes O(εδ1/Ca)); the
largest core contribution is of order δ1/m; and the largest Marangoni contribution
on the right-hand side is of size βδ2/Ca . Coupling of film and core dynamics and
retention of Marangoni forces implies that all three terms are in balance, leading to

Ca ∼ mε, δ2 ∼ εδ1

β
. (3.9)

If Ca � mε, then there is no coupling between film and core, and the film problem
closes without the need of the solutions in the core region – this is the case studied
by Wei & Rumschitzki (2005). In the present analysis we will insist on coupling
and recover the decoupled problem as a special case by setting m = 1. Recall from
the discussion just below (3.3) that δ1 ∼ βδ2 when surface tension variations are as
important as the curvature terms. This gives Γz = 0 to the leading order. We do not
consider this further here, but see Wei & Rumschitzki (2005) for some additional
comments in the linear regime.

We next consider scalings for the surfactant concentration and kinematic equations
(2.16) and (2.19). Evaluating (2.19) at r = 1 + δ1H and using the scales (3.6) to define
new order-one dependent variables U2, W2 by

ũ2 =
ε3δ1

mCa

U2, w̃2 =
ε2δ1

mCa

W2 (3.10)

gives

ε3δ1

mCa

U2 = δ1Ht +
2εδ1

m + 2ε
Hz − 2δ2

1

m + 2ε
HHz +

ε2δ2
1

mCa

W2Hz + h.o.t., (3.11)

where h.o.t. denotes higher-order terms. Equation (3.9) shows that the last term is
small compared with the term on the left-hand side (unless δ1 ∼ ε, corresponding
to strongly nonlinear disturbances which must be dealt with by direct simulations).
Assuming m = O(1) the left-hand side of (3.11) is small relative to the second term
on the right-hand side (base-flow term) since (ε2δ1/m2) � (εδ1/m). The base-flow
term can balance the unsteady term by the time-scale change ∂t → ε∂τ , to yield
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Hτ + (2/m)Hz = 0 to the leading order. In the surfactant-free case (see Papageorgiou
et al. 1990; Georgiou et al. 1992) a Galilean translation removes this leading-order
term to produce nonlinear dynamics at the next order. Such a removal is in general
not possible due to the coupling with the surfactant concentration equation (2.16).
To avoid trivial solutions Wei & Rumschitzki (2005) relaxed the film-core coupling
condition (3.9) by allowing a smaller Ca in order to make the U2 term on the left-hand
side of (3.11) balance the unsteady and base-flow terms; this leads to Ca ∼ ε2. The
analysis inevitably leads to linear dynamics and no film-core coupling, details of
which are provided in Wei & Rumschitzki (2005). Our objective is to explore in detail
scalings that enable nonlinearity to be included in a consistent asymptotic manner,
and this is pursued next.

The key in obtaining nonlinear dynamics is to have relatively large Ca so that
the leading-order term Ht + (2ε/m)Hz can be removed by a Galilean transformation.
Failure to do so leads to a linear response as described in Wei & Rumschitzki (2005).
Consider (2.16) at r = 1 + δ1H which reads

δ2Γ̃t +
2εδ2

m
Γ̃z − 2δ1Γ0

m
Hz − 2δ1δ2

m
(Γ̃ H )z +

2εδ1Γ0

m
Hz − 2δ2

1Γ0

m
(H 2)z

+
ε2δ1Γ0

mCa

W2z =
δ2

Pe

Γ̃zz + h.o.t. (3.12)

In order to obtain a nonlinear response, the term δ2Γ̃t + (2εδ2/m)Γ̃z must dominate
to the leading order so that it can be removed by the same Galilean transformation
that operates on the kinematic condition (3.11). The third term on the left-hand
side dominates the fifth, sixth and seventh terms. (The last result follows on use of
Ca ∼ mε with m = O(1).) This observation allows us to balance the nonlinear fourth
term with the linear third term as long as

Γ0 ∼ δ2 ⇒ Γ0 = δ2Γ 0 (Γ 0 = O(1)). (3.13)

A balance of interfacial diffusion requires

Pe =
1

δ1

P e � 1. (3.14)

The appropriate change of time scale that allows unsteadiness in the nonlinear
evolution is

∂

∂t
→ −2ε

m

∂

∂z
+ δ1

∂

∂τ
. (3.15)

Finally, inserting (3.13)–(3.15) into (3.12) and keeping the leading-order terms yields
the following equation for Γ̃ :

Γ̃τ − 2Γ 0

m
Hz − 2

m
(Γ̃ H )z =

1

P e

Γ̃zz. (3.16)

Note that δ2 is not yet specified.
It remains to determine δ1 and the evolution of H from the kinematic condition

(3.11). Substituting the transformation (3.15) into (3.11) makes the right-hand side of
(3.11) of order δ2

1 . Inserting the estimates (3.9) into the left-hand side of (3.11) shows
that a balance is possible if

ε2δ1 ∼ δ2
1 ⇒ δ1 ∼ ε2, (3.17)
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and the resulting evolution equation is

1

mCa0

U2 |y=1= Hτ − 2

m
HHz, (3.18)

where we have written Ca = εCa0 with Ca0 = O(1) and assumed that m = O(1). It
remains to determine U2 |y=1 in terms of H and Γ̃ in order to close the system. Before
presenting that calculation, we determine the different parameter regimes that our
canonical nonlinear system can describe. We know from (3.9) that Marangoni stresses
will be important if δ2 ∼ εδ1/β . In addition, (3.13) shows that δ2 is of the same order
as the mean initial surfactant concentration Γ0; combining the two gives β ∼ ε3/Γ0.
Using these estimates enables us to write the Marangoni number (see (2.20)),

Ma ∼ ε2

Γ0

. (3.19)

It can be seen that flows which are characterized by small, order-one, or large
Marangoni numbers are covered. Consideration of (3.9), (3.13) and (3.19) has identified
the following three canonical scalings:

Ma ∼ 1, Γ0 ∼ ε2, β ∼ ε, (3.20)

ε2 � Ma � 1, ε2 � Γ0 � 1, ε3 � β � ε, (3.21)

1 � Ma � ε−1, ε3 � Γ0 � ε2, ε � β � 1. (3.22)

All the regimes above produce a nonlinear response governed by the same canonical
system which is solved numerically in later sections. The initial Γ0 distribution sets
the parameter values, and we see that in the dilute limit the Marangoni numbers are
large as expected.

3.2. Asymptotic expansions and the final equations

The precise form of the asymptotic equations depends on the scale of Re1, which
is not determined by the previous balance arguments. In the following we choose
Re1 ∼ ε, which provides the simplest situation in which the film and core dynamics
couple, and the core flow is governed to the leading order by the Stokes equations.
Other scales are possible, Re1 = O(1) for example, and lead to different evolution
equations with linearized Navier–Stokes flow in the core (see Papageorgiou et al.
1990). For completeness we present a brief derivation of the case Re1 ∼ ε and refer
the reader to Papageorgiou et al. (1990) for details.

Employing the scalings (3.4), (3.6), (3.8) and (3.9) and the notation introduced
in (3.10) along with (3.17), we express film quantities as u2 = ε4U2 + O(ε5), w2 =
w̄2 + ε3W2 + O(ε4) and p2 = p̄2 + P20 + εP21 + O(ε2), while in the core we expand the
solutions as u1 = ε2U1 + O(ε3), w1 = w̄1 + ε2W1 + O(ε3) and p1 = p̄1 + εP11 + O(ε2).
Setting Re1 = ελ with λ = O(1) and substituting film variables into (2.12)–(2.14) gives
to the leading order

P20z − m

λ
W2yy = 0, P20y = 0, W2z = U2y. (3.23)

Since P20 is independent of y, the system (3.23) can be integrated to yield the
leading-order axial and radial velocities in the film

W2 =
λ

m

(
1

2
P20zy

2 + A(z, t)y

)
, U2 =

λ

m

(
1

6
P20zzy

3 +
1

2
Az(z, t)y

2

)
. (3.24)

The function A(z, τ ) is to be determined.
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At the interface, the leading-order normal and tangential stress balance boundary
conditions ((2.17) and (2.18)) become

P20 =
1

λCa0

(H + Hzz), (3.25)

mW2y(1, z, t) + U1z(1, z, t) + W1r (1, z, t) = − β0

Ca0

Γ̃z, (3.26)

where we have used Ca = εCa0 and β = (ε3/δ2)β0 (see (3.9) and (3.17)). The kinematic
condition (3.11) combined with a Galilean transformation, yields, to the leading
order,

U2(1, z, t) = Hτ − 2

m
HHz. (3.27)

Invoking continuity of axial velocity (using (2.27) and the scalings (3.17)) and
continuity of radial velocity leads to the expressions

W1 |r=1= 2H

(
1 − 1

m

)
, U1 |r=1= 0. (3.28)

The function A(z, τ ) is still unknown and can be determined once the core problem
is solved. Using the expressions introduced earlier yields the following leading-order
Stokes flow in the core:

λP11r = ∇2U1 − U1

r2
, (3.29)

λP11z = ∇2W1, (3.30)

1

r
(rU1)r + W1z = 0. (3.31)

This elliptic problem in a non-slender region causes non-local terms to arise. The
solution for the streamfunction ψ defined by U1 = −(1r)ψz, W1 = (1r)ψr is given in
Fourier space by (see Papageorgiou et al. 1990 for details)

ψ̂ = C1(k)rI1(kr) + C2(k)r2I0(kr), (3.32)

where I0, I1 are the modified Bessel functions of orders zero and one, respectively,
and C1(k), C2(k) are functions of k to be found. (The Fourier transform is defined in
the usual way for a function χ(r, z, t) to be χ̂ =

∫ ∞
−∞ χ(r, z)e−ikzdz.)

The Fourier transform of A is found by expressing the tangential stress equation
(3.26) in terms of ψ , taking the Fourier transform in z and using the solution (3.32)
at r = 1, to obtain

Â = −2k

λ
(kC1 + C2)I1(k) − 2C2k

2

λ
I0(k) − ikβ0

λCa0

̂̃Γ − ikP̂20. (3.33)

Taking the Fourier transform of U2(y, z, t) in (3.24) and using (3.33) yields

Û2(y, k, t) =
λk2

2m

(
1 − 1

3
y

)
y2P̂20 − ik2(kC1 + C2)

m
y2I1(k)

− ik3C2

m
y2I0(k) +

k2β0

2mCa0

y2 ̂̃Γ . (3.34)
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Finally, C1(k) and C2(k) are determined in terms of Ĥ by inserting (3.32) into
the Fourier transform of the continuity of velocity boundary conditions (3.28) (see
Papageorgiou et al. 1990). After evaluating (3.34) at y = 1 and applying the inverse
Fourier transform, we obtain

U2(1, z, t) = − i

mπ

(
1 − 1

m

) ∫ ∞

−∞
N(k)Ĥ (k)eikz dk − λ

3m
P20zz − β0

2mCa0

Γ̃zz, (3.35)

where N(k) = k2I 2
1 (k)/(kI 2

1 (k) − kI 2
0 (k) + 2I0(k)I1(k)). The desired evolution equation

is obtained by using (3.35) in the kinematic condition (3.27) and the elimination of
P20 in favour of H through (3.25) and is given by

Hτ − 2

m
HHz +

i

mπ

(
1 − 1

m

) ∫ ∞

−∞
N(k)

∫ ∞

−∞
H (z, τ )eik(z−z̃) dz̃ dk

+
J

3mλ
(H + Hzz)zz +

β0

2mCa0

Γ̃zz = 0. (3.36)

Equation (3.36) without the surfactant term is identical to equation (28) in
Papageorgiou et al. (1990). The new term comes from the tangential stress balance
(2.18) and is the Marangoni force. (The parameter β0/Ca0 is the Marangoni number
defined in the usual way.) The integral term represents the influence of viscosity
stratification; when m = 1 that term disappears. Note that for m = 1 and β0 = 0,
the equation reduces to the KS equation (see Frenkel et al. 1987; Papageorgiou et al.
1990).

Finally for simplicity, the surfactant equation (3.16) is written as

Γτ − 2

m
(Γ H )z =

1

P e

Γzz, (3.37)

where Γ = Γ 0 + Γ̃ . The coupled system (3.36) (with Γ̃ replaced by Γ ) and (3.37) is
studied numerically in § 5. In what follows the overline is dropped from Γ 0.

4. Canonical rescaling and linear stability
The evolution equations (3.36) and (3.37) are rescaled using the transformations

z → −z, H → J

6λ
H, τ → 3mλ

J
t, Γ → J 2Ca0

9λ2β0

Γ, (4.1)

to give the following canonical system:

Ht + HHz + iΛ

(∫ ∞

−∞
N(k)

∫ ∞

−∞
H (z̃, τ )eik(z−z̃) dz̃ dk

)
+ Hzz + Hzzzz + Γzz = 0, (4.2)

Γt + (HΓ )z − ηΓzz = 0, (4.3)

where

Λ = − 1

π

(
1 − 1

m

)
3λ

J
and η =

3mλ

JP e

� 0. (4.4)

The parameter Λ is negative when m > 1 (film more viscous than core) and positive
when m < 1 (film less viscous than core). The linearized form of (4.2) and (4.3) when
Λ = 0 recovers the system of Wei & Rumschitzki (2005) as detailed below.

Linearizing (4.2) and (4.3) about the uniform states H = 0, Γ = Γ0, and looking for
normal-mode solutions proportional to exp(ikz + ωt), yields the following dispersion
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relation:

ω2 +
[
k4 − k2 + ηk2 + iΛN(k)

]
ω + iηΛk2N(k) + ηk2(k4 − 1) + iΓ0k

3 = 0. (4.5)

The solution of (4.5) yields two roots given by

2ω(k) = −(ηk2 + k4 − k2 + iΛN(k))

±
√

(ηk2 + k4 − k2 + iΛN(k))2 − 4iηΛk2N(k) − 4ηk2(k4 − k2) − 4iΓ0k3, (4.6)

and the flow is linearly unstable if R(ω(k)) = ωR(k) > 0 for any k. An apparent
difference with the clean case is that for Γ0 �= 0 we generally have ωI �= 0, implying
dispersion as well as growth/damping. It can be anticipated, therefore, that for
parameter values for which the KS equation has non-uniform steady states, the
presence of surfactant will induce a travelling wave. This feature, among others, is
fully explored using numerical experiments in § 5.

The dispersion relation (4.6) can be obtained from that of the full linear problem by
taking an appropriate thin annular limit. This has been shown for the surfactant-free
case by Georgiou et al. (1992), and details for the case with surfactant will be provided
elsewhere. The full linear problem has been calculated by Blyth et al. (2006), and we
note that the present analysis recovers the neutral stability curve in the vicinity of
the origin of their figure 8 in the thin annular limit. Furthermore the analysis here
extends the dynamics into the nonlinear regime for flows having thin annuli which
are difficult to resolve using direct numerical simulations.

Before providing typical growth rate characteristics we consider some limiting
forms. We recover the surfactant-free limit analysed by Papageorgiou et al. (1990)
and Georgiou et al. (1992) by considering η � 1 in the dispersion relation (4.6).
Equivalently, it can be done asymptotically in the perturbation partial differential
equations (PDEs) by utilizing the ordering H = O(1) and Γ = O(1/η). A large η

ordering is physically relevant, since it corresponds to very large interfacial diffusion
of the insoluble surfactant and hence in a uniform distribution of surfactant and
surface tension coefficient. The result is

ω+ = k2 − k4 − iΛN(k) + O(1/η), ω− = −ηk2 + O(1). (4.7)

The leading-order part of the root ω+ corresponds to the KS case when viscosity
stratification is present (i.e. (4.2) in the absence of Γ ). Analogous results hold when
|Λ| is large. (Note that −3λ/πJ < Λ < ∞, but we can consider a large negative
lower bound to obtain the asymptotic behaviour.) As before, there is a growing and
a damped root with asymptotic forms, as |Λ| → ∞,

ω+ = k2 − k4 + −iΛN(k) + O(1/|Λ|), ω− = −ηk2 + O(1/|Λ|). (4.8)

The leading-order growth rate is identical to that of the KS equation in the absence
of surfactant. A physical explanation for this is the following: when |Λ| is large the
shear jump between film and core is large and overcomes any shear stresses set up by
Marangoni forces. Thus the interface behaves to the leading order as if it were clean.

At large η and Λ, then, the stability tends to that for a clean interface. Next, we
give results for intermediate values and choose to fix Γ0 = 1. In figure 1 we show the
effect of increasing the surfactant diffusion coefficient η when Λ = 0. The growing
mode alone is indicated – the other root is always damped. It is seen that when η = 0
the flow is unstable for all wavenumbers, but the growth rate decreases to zero as
k → ∞. At non-zero η, the infinite band of unstable waves becomes finite, and the
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Figure 1. Effect of η on linear growth rates; Λ = 0 and Γ0 = 1. Values of η are shown in the
figure; KSE = KS equation.
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Figure 2. Effect of η on linear growth rates; Λ = 1 and Γ0 = 1. Values of η are shown in the
figure; KSE = KS equation.

growth rate curve decreases monotonically to the KS equation curve as shown by
(4.7).

The effect of η on the stability characteristics when Λ = 1 and Λ = −1 are shown in
figures 2 and 3. In the former case (i.e. core less viscous than the annulus), the effect of
the surfactant is to enhance the instability for all values of η relative to the clean case.
The growth rate corresponding to the root ω+ is higher than that for KS equation
for all values of k and tends asymptotically to the KS equation curve as η → ∞, as
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Figure 3. Effect of η on linear growth rates; Λ = −1 and Γ0 = 1. Values of η are shown in
the figure; KSE = KS equation.

established already in (4.7). The second root ω− always provides damping, but we
note that when η = 0 the corresponding growth rate tends to zero from below as
k → ∞. The monotonic convergence of the growth rate ω+ with the corresponding KS
equation curve is shown collectively in figure 2(d ). When Λ = −1 (i.e. the core is more
viscous than the annulus), the presence of the surfactant enhances the instability for
sufficiently small values of η. In contrast to the Λ = 1 case, both roots are growing
modes when η = 0 (figure 3a), with ω+ and ω− respectively being more and less
unstable than the KS equation case. As η increases from zero, both the maximum
growth rates and the length of the band of unstable wavenumbers for ω+ and ω−
decrease. In particular when η = 0.5 (figure 3b), the ω− mode is completely stable, and
the ω+ has a significantly reduced growth rate and band of unstable wavenumbers. As
η increases further, the ω− mode becomes increasingly stable, whereas the ω+ mode
exhibits a non-monotonic behaviour, as it becomes more unstable and asymptotes
to the KS equation curve as η → ∞. The effect of varying η has is summarized
in figure 4 which plots the neutral curves of k versus η for fixed negative Λ = −1
and initial surfactant concentration Γ0 = 1. The wavenumber k = 0 is always neutral,
and the solid line depicts the variation of the non-zero neutral wavenumber with η.
Regions above this curve are stable (short waves), and the region below is unstable
as indicated. As η increases from zero the band of unstable wavenumbers decreases
(when η = 0 there is instability for all k – see for example figure 3) and follows the
ω+ mode initially. At a value of η ≈ 0.5 there is mode-crossing, and the ω+ mode
becomes stable, while the ω− mode takes and the neutral stability curve asymptotes
to k = 1 as already pointed out in the large η analysis in (4.7).

We consider next the instability characteristics as Λ is varied for fixed η = 0.5 and
Γ0 = 1. It is found that for Λ > 0 one mode is unstable (ω+), while the other mode ω−
is always damped. The instability induced by the presence of surfactant when Λ = 0
is reduced by increasing Λ (i.e. increasing the core viscosity relative to that of the
film), and eventually the growth rate curve asymptotes to that for a clean interface
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Figure 4. Effect of η on linear growth rates; Λ = −1 and Γ0 = 1. Values of η are shown
in the figure.
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Figure 5. Effect of Λ < 0 on linear growth rates; η = 0.5 and Γ0 = 1. Values of Λ are shown
in the figure. The dashed curve corresponds to the clean case.

as Λ → ∞ as established in (4.8). The situation for negative Λ is different (figure 5).
Both modes can be unstable, and in fact an exchange takes place as Λ decreases.
When Λ = 0, the ω+ mode lies above the KS equation curve, whereas the ω− mode is
stable for all wavenumbers and lies below the KS mode (figure 5a). As Λ decreases,
the ω+ mode becomes increasingly stable and the ω− mode increasingly unstable
(see figure 5b; Λ = −0.5). By Λ = −1 the ω+ mode is completely stable, while the
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Figure 6. Effect of Λ < 0 on linear growth rates; η = 0.5 and Γ0 = 1. Values of Λ are shown
in the figure. The dashed curve corresponds to the clean case.

ω− mode becomes unstable for a range of wavenumbers starting at k = 0 (see
figure 5c). As Λ decreases further, the ω+ mode becomes increasingly more stable,
while the ω− mode asymptotes to the clean KS equation curve as established by the
result (4.8) (see figure 5d ; Λ = −10). In summary, then, a large viscosity contrast (Λ
positive or negative) decreases the (normally destabilizing) effect of surfactants. In
figure 6 we provide the neutral stability characteristics for fixed η = 0.5 and Γ0 = 1.
Once again there is mode crossing so that the unstable ω− mode which dominates for
Λ < 0 is overtaken by the ω+ mode which is unstable for Λ > 0. The dashed lines
in figure 6 follow the continuation of the modes after crossing. It can be seen, for
example, that in the region bounded by the dashed curves, both modes are unstable,
but the solid curve gives the largest unstable value of k. We also note that both
branches of the neutral stability curve asymptote to k = 1 as |Λ| → ∞ as anticipated
by the asymptotic result (4.8).

We conclude this section by considering a useful localization of the linear pseudo-
differential operator that appears in (4.2). Following Smyrlis & Papageorgiou (1998),
we note that N(k) is an odd function of k, and hence the operator has a purely
imaginary symbol in Fourier space, corresponding to a generalized odd derivative.
We approximate N(k) by its two-term Taylor expansion N(k) = 2k + (1/6)k3, which
casts (4.2) into a Kuramoto–Sivashinsky/Korteweg–De Vries-type equation

Ht + HHz + 2ΛHz − Λ

6
Hzzz + Hzz + Hzzzz + Γzz = 0 (4.9)

to be solved along with (4.3). In this case the dispersion relation (4.6) holds with
N(k) given by its two-term expansion. We have recalculated all instability results
presented in figures 2–5 using the above local approximation and found them to be
almost identical. Numerical calculations of Smyrlis & Papageorgiou (1998) of the
nonlinear problem show that the localized equations are a good approximation of
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the full non-local problem. In the numerical work that follows we concentrate on the
case Λ = 0 but also give representative results for non-zero Λ using the localized
system (4.9).

5. Numerical methods
In this section we solve the system (4.2) and (4.3) numerically on periodic domains

of period 2L. The value of L is a parameter measuring the size of the system, and as
L increases more unstable modes enter into the dynamics. On 2L-periodic domains,
the non-local term in (4.2) has the form of a Fourier series, namely

iΛ

∞∑
n=−∞

N(πk/L)

(
1

2L

∫ L

−L

H (z̃, t)e−inπz̃/L

)
einπz̃/L. (5.1)

Following Papageorgiou & Smyrlis (1991) and Smyrlis & Papageorgiou (1991,
1996, 1998), we rescale the problem to a 2π-periodic domain. The appropriate
transformations are (for brevity the same symbols are used)

z → L

π
z, t → L

π
t, H → π

L
H, Γ → π

L
Γ. (5.2)

Defining the positive parameter

ν =
π2

L2
(5.3)

leads to the following canonical system:

Ht + HHz + iΛ

∞∑
k=−∞

N(k
√

ν)Ĥne
ikz + Hzz + νHzzzz + Γzz = 0, (5.4)

Γt + (HΓ )z − ηΓzz = 0, (5.5)

where Ĥn = (1/2π)
∫ π

−π
H (ξ, t)e−inξ dξ are the Fourier coefficients of H (z, t) on the

given interval. We note that the analogous rescaling applied to the localized system
transforms (4.9) into

Ht + HHz + 2
Λ√
ν
Hz − Λ

√
ν

6
Hzzz + Hzz + νHzzzz + Γzz = 0. (5.6)

When Γ is absent, the transformations x → −x, H → −H and Λ → −Λ make it
possible to obtain solutions corresponding to Λ < 0 from those for Λ > 0. This is
not the case when Γ is present due to the coupling term Γzz.

It follows directly from the system (5.4) (or (5.6)) and (5.5) that
∫ 2π

0
H dz and∫ 2π

0
Γ dz are conserved quantities and can be used as an accuracy check on the

numerics. In particular, defining initial conditions

H (z, 0) = H0(z), Γ (z, 0) = G0(z),

with (1/2π)
∫ 2π

0
H0(z) dz = 0 and (1/2π)

∫ 2π

0
G0(z) dz = Γ0 > 0, we have the conserved

quantities ∫ 2π

0

H (z, t) dz = 0 and

∫ 2π

0

Γ (z, t) dz = 2πΓ0. (5.7)

The numerical scheme employed here is implicit and pseudo-spectral. Taking the
Fourier transform of the system (the symbol F will be used to denote the Fourier
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transform operation) (5.4) and (5.5) and defining the complex valued vector uk(t) =

(Ĥk(t), Γ̂k(t))
T (where hats denote Fourier transforms; k is the wavenumber; the

superscript T denotes the transpose of a vector) casts the system into the following
continuous time equation:

duk

dt
+ M(k)uk = f k, (5.8)

where f k = (f (1)
k , f

(2)
k )T with f

(1)
k (t) = −F[HHz](t; k), f

(2)
k (t) = −F[(HΓ )z](t; k),

and the 2 × 2 matrix M(k) given by

M(k) =

(
νk4 − k2 + iΛN(k

√
ν) −k2

0 ηk2

)
. (5.9)

Note that in the case of the local equation (5.6) the symbol N(k
√

ν) in the matrix
(5.9) becomes N(p) = (2k

√
ν/ν) + ((k

√
ν)3/6ν). Discretizing in time so that un

k is
the numerical approximation of uk(n�t), where �t is the time step, we propose the
following two-step scheme:

un+1/2
k − un

k

(�t/2)
+ M(k)un+1/2

k = f n
k , (5.10)

un+1
k − un

k

�t
+

1

2
M(k)

(
un+1

k + un
k

)
= f n+1/2

k . (5.11)

It can be shown (omitted for brevity) that the scheme is of accuracy O(�t2) in time
(and spectral in space). For each value of k the system can be solved analytically
to obtain un+1/2

k from (5.10) The vector un+1/2
k is inserted into (5.11) which is solved

explicitly for un+1
k , resulting in a two-step scheme (the formulas are not given for

brevity). All transforms are performed using the fast Fourier transform (FFT) and
inverse FFTs are used to obtain function values in real space as needed. More details
can be found in Kas-Danouche (2002).

Due to the complex dynamical phenomena we utilize several tools in the evaluation
of the different attractors found numerically. One useful tool is the L2 norm (or
energy) of the solution H (z, t) defined by

E(t) = ‖H (·, t)‖2
2 =

∫ 2π

0

H (z, t)2 dz. (5.12)

This is used in the construction of the phase plane (E(t), dE(t)/dt) and the particular
Poincaré sections satisfying dE/dt = 0. The latter points are the maxima and minima
of the graph of E(t). We denote the maxima of E(t) by the pairs (tj , Ej )j=1,∞
(analogous notations hold for the minima). The points (Ej, Ej+1), j = 1, . . . , in R2

(two-dimensional plane) represent the flow generated by the infinite-dimensional
dynamical system using the L2 projection. The union of these points is a set A which
can provide insights into the dynamics. For example, if there is only one point in A,
then the flow is seen to be time-periodic with one minimum (and one maximum);
two points in A imply time periodicity with two maxima (and two minima) and so
on. Quasi-periodicity and chaotic dynamics are also suggested by this construction
which is a return map, in the former case by curves in R2 which become dense (i.e.
non-fractal) as the evolution develops and in the latter by fractal curves, folding and
self-similarity. From a computational viewpoint we emphasize that the construction
of such return maps is typically expensive, since the PDE must be integrated over
long time intervals to add a point (as in period-doubling cascades) or if the flow
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is chaotic over long periods of time to visit the same vicinity of the plane. More
details on the use of numerical return maps in estimating the universal Feigenbaum
constants for the KS equation can be found in Papageorgiou & Smyrlis (1991) and
Smyrlis & Papageorgiou (1991, 1996).

6. Numerical results
There are four parameters present in the evolution equations: the ‘viscosity

parameter ν > 0, the viscosity stratification parameter Λ, the surfactant diffusion
coefficient η > 0 and the initial surfactant concentration Γ0 > 0. The possible long-
time behaviour of solutions includes stationary and travelling wave attractors, as
well as time-periodic/quasi-periodic and chaotic attractors. In order to determine
the nature of the solution over long times, we have performed extensive numerical
experiments, examining hundreds of values of the parameters ν, Λ, η and Γ0. We
give representative solutions rather than completely mapping out the phase space.
Our numerical results are based on solutions of the initial-value problem, and we
therefore calculate stable or attracting states rather than a complete picture of stable
and unstable solution branches.

6.1. Equal viscosities Λ = 0

This case corresponds to the insoluble surfactant generalization of the KS equation.
The initial conditions for the results that follow are

H (z, 0) = − sin(z), Γ (z, 0) = Γ0 = 1, (6.1)

and to begin with we fix η = 1 and consider decreasing values of ν (i.e. we increase
the system size). For ν larger than approximately 1.47 the long-time evolution gives a
uniform trivial state, and non-trivial steady-state travelling waves emerge below this
value. The non-trivial waves are initially fully modal (i.e. they contain all Fourier
modes) for ν � 0.2 and have decreasing speeds and increasing L2 norms. The
travelling wave speed changes sign at a value of ν between 0.5 and 0.4 and remains
negative and decreasing as noted above. At the value ν = 0.19 (approximately), a
Hopf bifurcation occurs giving rise to time-periodic travelling waves, i.e. waves which
after a full period of oscillation take on the shape at the start of the period but shift
spatially. Using the energy (5.12) and the Poincaré sections described above, we find
that on entering this first time-periodic attractor, E(t) has one maximum and one
minimum as ν decreases from 0.19 to 0.116. The period of oscillation decreases from
approximately 1.380 to 1.097. At a value of ν between 0.116 and 0.115, a bifurcation
occurs that produces three maxima and three minima in the graph of E(t); this
situation persists until ν is of a value between 0.112 and 0.111, at which a further
bifurcation gives rise to oscillations with five maxima and minima. This sub-window
persists until ν ≈ 0.099, below which bimodal steady-state travelling waves emerge;
these are waves with non-zero Fourier modes k = 2n for integer n. The bifurcations in
the time-periodic window are not smooth as would be the case in a period-doubling,
for instance. This has been confirmed numerically by monitoring the average of E

over a period, defined as IE(ν) = (1/T )
∫ t+T

t
E(s; ν) ds, where t is any chosen time

(sufficiently large for transients to be irrelevant) and T is the period of oscillation. For
example, in crossing from ν = 0.116 to ν = 0.115 (from the first periodic sub-window
to the second), IE jumps from 11.761 to 18.085, while crossing from the second
sub-window to the third IE jumps from a value of 20.273 at ν = 0.112 to 56.396 at
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Window label Window range in ν Description of the attractors

A ν � 1.14 Trivial solution
A1 0.2 � ν < 1.47 Fully modal travelling
B1 0.099 � ν � 0.19 Time-periodic travelling
A2 0.055 � ν � 0.098 Bimodal travelling
B2 0.041 � ν � 0.054 Time-periodic travelling
A4 0.014 � ν � 0.04 Tetramodal travelling
B3 0.011 � ν � 0.013 Time-periodic travelling
A8 0.00375 � ν � 0.01 Octamodal travelling
B4 0.00275 � ν � 0.0035 Time-periodic travelling
A16 0.0009 � ν � 0.0025 Decahexamodal travelling
B5 0.000705 � ν � 0.0008 Time-periodic travelling

Table 1. Solution branches as ν decreases; Λ = 0, η = 1 and Γ0 = 1, with Aj the windows
of steady-state travelling waves of period 2π/j and B1, . . . , B5 the time-periodic windows at
successively smaller values of ν.

ν = 0.111 (see Blyth, Hall & Papageorgiou 2003 for similar phenomena in pulsating
cylindrical flows).

With a further decrease of ν, the bimodal steady-state travelling waves loose stability
through a Hopf bifurcation to another time-periodic travelling waves window. This
in turn looses stability to tetramodal steady-state travelling waves, and the scenario
is repeated with windows shrinking in size as ν decreases. We managed to compute
octamodal and decahexamodal steady-state travelling waves. (These are periodic
in space with periods 2π/8 and 2π/16, respectively; equivalently the only non-zero
Fourier modes in the spectrum of the solutions are multiples of 8 and 16, respectively.)

In table 1 we provide details of the windows for 0.2 � ν � 0.0008. In the time
periodic windows B2–B5 the energy E(t) mostly has two maxima and two minima.
The periods of oscillation decrease from roughly 0.48 in window B2 to 0.15 in window
B3 to 0.045 in window B4 and finally to approximately 0.015 in window B5. (The
numbers given are representative values – the period varies smoothly with ν in a
given sub-window.) The decrease in the period along with the value of ν imposes
computational restrictions on time steps and the number of modes. For example, in
window B5 we used a time step �t = 10−3 and 2048 modes.

In figure 7 we show representative solutions at a fixed large time (so that transients
are not present and the waves are travelling). Along with the scaled interfacial shape
H and surfactant concentration Γ , we superimpose the axial velocity W2(1, z, t) (see
(3.24)). A common feature of the results in figure 7 (and also of travelling waves
in windows A4, A8 and A16 shown later) is that the surfactant concentration has
local maxima just ahead of an interfacial local maximum. This can be explained by
considering the variation of the local axial velocity W2 which is solely responsible
for the non-uniform convection of surfactants along the interface, since we are in a
travelling frame of reference. In all cases, there is a zero of W2 at a position z = zs ,
ahead of an interfacial maximum, such that the local flow for z > zs is negative, while
for z < zs it is positive. This in turn causes surfactant to accumulate in the vicinity
of zs , resulting in a surfactant maximum there. The situation at interfacial minima
is similar in that there is again a stagnation point ahead of the minimum, but the
flow switches direction as compared to the previous case and so sweeps the interface
relatively clean of surfactant. This explains the clean regions ahead of an interfacial
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Figure 7. Effect of ν (values shown) on profiles of interfacial shape H (thick solid line),
surfactant concentration Γ (dashed) and axial velocity W2 (light solid line); Λ = 0 and
Γ0 = 1.0. (a, b) Fully modal (window A1); (c, d ) bimodal (window A2).
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Figure 8. Effect of ν (values shown) on tetramodal travelling wave profiles (window A4) of
interfacial shape H (thick solid line), surfactant concentration Γ (dashed) and axial velocity
W2 (light solid line); Λ = 0 and Γ0 = 1.0.

minimum as seen in the four panels of figure 7. Representative waves from the higher
modal travelling wave solutions presented in table 1 are given in figures 8 and 9.
Figure 8 shows the wave shape, surfactant concentration and axial velocity for the
two representative values ν = 0.034, 0.021 which belong to the tetramodal window A4

of table 1. The surfactant distribution mechanism described above is also present here
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Figure 9. Effect of ν (values shown) on profiles of interfacial shape H (thick solid line) and
surfactant concentration Γ (dashed); Λ = 0 and Γ0 = 1.0. (a) Octamodal window A8; (b)
decahexamodal window A16.

but operates on the shorter basic period π/4. In figure 9 we provide representative
travelling wave solutions at the values ν = 0.009 and ν = (0.009/4) = 0.00225
from the octamodal and decahexamodal windows A8 and A16, respectively. It is
observed from figure 9 that as ν is reduced by a factor of four, the amplitude of
the decahexamodal waves (bottom panel) increases by a factor of two. We note that
the wave speed also increases by a factor of two. The amplitude of the surfactant
concentration is almost unchanged as would be expected by the integral conservation
property. These observations reflect an asymptotic scaling property of the equations
as we explain next.

Consider a travelling wave solution of (5.5) and (5.6) for Λ = 0 denoted by
H (z − ct; ν, η) and Γ (z − ct; ν, η). For a fixed positive integer κ , substitution of (5.5),

H (z, t) = κH (y; ν, η), Γ (z, t) = Γ (y; ν, η), (6.2)

into (5.4) and (5.5), with

ν = κ2ν, y = κ(z − ct), (6.3)

shows that H and Γ satisfy the equations

−cHy + H Hy + Hyy + νHyyyy + 1
κ
Γ yy = 0, 0 � y < 2π, (6.4)

−cΓ y + (H Γ )y = ηΓ yy. (6.5)

Except for the term (1/κ)Γ yy , (6.4) and (6.5) have the same form as the travelling
wave equations for H (z − ct; ν, η) and Γ (z − ct; ν, η). This suggests the following
construction to obtain travelling waves at a decreasing sequence of ν: Starting with
κ = 1 and a known value of ν which supports travelling waves (for example from
window A1 of table 1), we use the near-scale invariance to obtain approximate
travelling wave solutions for a decreasing sequence of ν = ν/κ2. These approximate
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Figure 10. Rescaling of the interfacial shape (H ) octamodal solutions (top panel of figure 9)
to the decahexamodal solutions (figure 9b), using the asymptotic similarity property (6.2). Solid
line, decahexamodal solution at ν = 0.00225; circles, rescaled octamodal solution at ν = 0.009.
Only part of the wave is shown.

solutions are used in the initial-value problem (cr)–(cr) to verify that exact, stable
travelling wave solutions are asymptotically close to the approximate solutions. The
numerical results of figure 9 confirm this observation. The figure shows H , Γ for
values of ν which correspond to octamodal and hecadexamodal waves, i.e. κ = 8
and 16 with respect to a value of ν in window A1. In going from ν = 0.009 to
ν = 0.00225, a decrease by a factor of four, we apply the transformation (6.2) with
κ = 2. Therefore, the profile in figure 9(b) is obtained from that in figure 9(a) by
multiplying the latter by two and horizontally rescaling it by 1/2. In figure 10, we
superimpose a rescaled ν = 0.009 profile over the profile at ν = 0.00225, using open
circles for the former. The corresponding rescaling for Γ is given in figure 11. The
agreement is excellent, showing that the approximate travelling waves obtained by
rescaling are very close to the exact travelling wave solutions even for moderate values
of κ . We use this property to find windows of travelling wave solutions at decreasing
values of ν.

In the next set of numerical experiments we evaluate the effect of the diffusion
coefficient η on the solutions for fixed values of ν = 0.1 and Γ0 = 0.4 with initial
condition H0(z) = cos z+(1/2) sin 3z, G0(z) = 0.4. The value ν = 0.1 is chosen because
it produces, in the absence of surfactants, chaotic homoclinic bursts (see Smyrlis &
Papageorgiou 1996a), which is expected to be reproduced at large η, since the system
would then behave as if it were clean. The attractors are well defined at relatively
small and large values of η. At intermediate values, however, it is not clear (even after
computations of several thousand time units) if a well-defined final state emerges. For
example, for values of η ∈ [0.001, 0.2] the flow is time-periodic with four well-defined
maxima and four minima in the signal of E(t). Time periodicity is lost for higher
values of η, and in particular for η ∈ [0.35, 0.6] our numerical solutions produce
complex dynamics which include sequences of almost time-periodic intervals with
chaotic dynamics in between.
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figure 9) to the decahexamodal solutions (bottom panel of figure 9), using the asymptotic
similarity property (6.2). Solid line, decahexamodal solution at ν = 0.00225; circles, rescaled
octamodal solution at ν = 0.009. Only part of the wave is shown.
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Figure 12. The evolution of the maxima of E(t) = ‖H‖2
2 for η = 0.45, ν = 0.1, Λ = 0

and Γ0 = 0.4. Regions of almost time-periodic flow (sharp lines) separate regions of chaotic
dynamics.

A representative example is given in figure 12 for η = 0.45. The figure depicts the
evolution of the maxima of E(t) over a time interval 2 × 104. The picture is produced
by plotting a dot every time a maximum of E(t) is detected, and it is seen that
the dynamics have not reached a final state (and probably do not do so) but are
exhibiting complex behaviour. For example, in regions in which there is a cloud of
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Figure 13. Effect of η (values shown) on the dynamics; ν = 0.1, Λ = 0 and Γ0 = 0.4. The top
panel (a) is the clean case (KS equation). The initial conditions are H0(z) = cos z+(1/2) sin 3z,
G0 = 0.4.

dots (the time intervals 3×103 to 9×103 and 1.3×104 to 1.7×104, approximately) the
flow is chaotic, as quantified by return maps. Just before the second chaotic window
mentioned above, the flow is almost periodic with six maxima (and six minima) –
exact periodicity would be seen as points lying on six parallel horizontal lines. In
addition, it appears that the route to chaos is through a period-doubling cascade as
seen by the branching of the periodic solutions near t ≈ 1.2×104. As the flow evolves
the chaotic windows are interchanged with almost-periodic windows, and the pattern
persists.

As η is increased above 0.6, the large-time behaviour is mostly chaotic. In order
to make a direct comparison with solutions of the KS equation, we consider the
effect of increasing η. For values of η larger than about 10, the dynamics are
dominated by chaotic homoclinic bursts as are the dynamics of the KS solutions,
also included in figure 13. In the homoclinic bursts, the L2 norm of H undergoes
rapid chaotic oscillations which are separated by equal constant states. (The dynamics
are homoclinic.) The separation between chaotic bursts (equivalently the duration of
the constant energy states) becomes longer as η is increased, with the clean case
(KS equation) having the longest separations. In the time intervals in which E(t) is
constant, the flow is a bimodal steady-state travelling wave. A direct comparison of
the computed interfacial profiles taken from any of the constant E intervals is made
in figure 14. The behaviour of the dynamics tending to that of the KS equation as η

becomes large are expected to hold at other values of ν also. It is also noteworthy
that η does not need to be very large for agreement with KS dynamics to hold.

6.2. The case of unequal viscosities, Λ �= 0

Next we turn to the numerical solutions of the canonical evolution equations
(5.5) and (5.6) when Λ �= 0. Due to the increased number of parameters (of
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Figure 14. Comparison of the profiles H taken from the constant energy intervals of figure 13.
Solid line, KS equation; diamonds, η = 20; asterisks, η = 50; open circles, η = 100. The profiles
have been shifted to align horizontally.

which there are four now), we have not attempted to construct a complete
picture of the solution space. Instead, we concentrate on the effect of Λ on the
dynamics.

Through numerical experiments we have established that the effect of Λ on
travelling wave solutions (for example solutions supported in window A1 of table 1)
is to increase the wave speed and the amplitudes of the solutions (equivalently the L2

norm).
Of more interest is the effect of Λ on solution branches which are not travelling

waves but which evolve dynamically, for example those that are time-periodic. It
has been established for the clean case that the dispersive effects introduced by the
viscosity stratification act to regularize dynamic complexity into pulses of periodic
travelling waves with increasing amplitudes (see Papageorgiou et al. 1990). In what
follows we compute such phenomena for the surfactant-laden interface. We choose
ν = 0.1, η = 1 and Γ0 = 1, which for Λ = 0 corresponds to a solution is in the
lower part of sub-window B1 of table 1 and is characterized by five maxima and
five minima (labelled by TP5 in which the numeral after TP denotes the number of
maxima and minima) in the signal of E(t). The period of oscillation is T ≈ 3.053.
Over 100 numerical experiments have been performed to compile results for non-zero
Λ which are shown in table 2.

The overall trend, as Λ increases from zero, is to enter a chaotic regime through
what appears to be a sub-harmonic cascade and eventually to obtain solutions
attracted to bimodal steady-state travelling waves through a reverse sub-harmonic
cascade. More precisely, the time-periodic TP5 branch of solutions that starts at
Λ = 0 period-doubles to a TP10 branch at a value of Λ ∈ (0.0011, 0.0012). The
TP10 branch in turn period-doubles to a TP20 branch of solutions at a value of
Λ ∈ (0.0017, 0.002), and chaotic oscillations are established at a value of Λ between
0.0021 and 0.0023. Using the first three windows of table 2 we find that the ratio of
successive window sizes to be 2.2 and 5.0, although these values can be sharpened
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Window range in Λ Description of the attractors

0 � Λ � 0.0011 Time periodic TP5
0.0012 � Λ � 0.0017 Time periodic TP10
0.002 � Λ � 0.0021 Time periodic TP20
0.0023 � Λ � 0.0093 Chaotic oscillations
0.013 � Λ � 0.02 Time periodic TP1, TP2, TP4
0.021 � Λ � 0.034 Chaotic oscillations (with small embedded TP5,

TP25 windows)
0.035 � Λ � 0.0401 Time periodic TP1, TP5, TP8, TP24
0.0402 � Λ � 0.0404 Chaotic oscillations
Λ = 0.0405 Time periodic TP8
0.0406 � Λ � 0.0409 Time periodic TP4
0.041 � Λ � 0.042 Time periodic TP2
0.043 � Λ � 0.072 Time periodic TP1
0.074 � Λ � 5.0 Bimodal steady-state travelling

Table 2. Solution branches as Λ increases; ν = 0.1, Γ0 = 1.0 and η = 1.0

significantly with additional computations. According to the Feigenbaum scenario, the
sizes of successive periodic windows (as an accumulation point beyond which chaos
emerges), decrease geometrically with the asymptotic ratio equal to 4.6692016 . . .

(see Feigenbaum 1978, 1983; Collet & Eckmann 1980) Our numerical results are
consistent with the universal theory. The analogous computation for the KS equation
produced three-digit accuracy (see Smyrlis & Papageorgiou 1991).

The chaotic window 0.0023 � Λ � 0.0093 can be characterized as Feigenbaum chaos,
being a result of sub-harmonic cascade. At values of Λ > 0.0093 the dynamics are
governed by an interplay between different attractors and their basins of attraction.
(Note that computationally we are accessing the most attracting solutions, since we
solve initial-value problems.) As can be seen from table 2, the Feigenbaum chaos
window gives way to time-periodic TP1 solutions at Λ ≈ 0.013. As Λ is increased
further, sub-harmonic bifurcations take place to produce two period-doubled windows
TP2 and TP4. Even though the results are not extensive, we estimate the ratio of the
lengths of the windows from TP2 to TP4 to be approximately equal to four, again in
general agreement with the Feigenbaum route to chaos. This chaotic window persists
with time periodic solutions of different types in between (see table 2). The last
window of chaotic oscillations is in the small interval 0.0402 � Λ � 0.0404. Further
increase of Λ produces the time-periodic solutions TP8, TP4, TP2 and TP1 shown in
the table. The largest Λ that produces a time-periodic solution (TP1) in our numerical
experiments is Λ = 0.072. At larger values the solutions get attracted to bimodal
steady-state travelling waves. It is interesting to start with the bimodal travelling
waves and to decrease Λ. Using the results of table 2, we can see that the small
chaotic window in the interval 0.0402 � Λ � 0.0404 appears to be the result of a
period-doubling route to chaos. The computed window lengths for TP4, TP2 and TP1
solutions are 0.0003, 0.001 and 0.03, yielding an estimate for the universal constant
of approximately 3.3 – as mentioned earlier this can be improved significantly, but
this is not our main interest here. We conclude, therefore, that as Λ increases from
zero a window of chaotic oscillations emerges through a Feigenbaum period-doubling
scenario.

On further increase of Λ, the chaotic attractor regularizes to time-periodic solutions
which appear to follow a reverse Feigenbaum cascade (as Λ increases) to bimodal
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Figure 15. Travelling wave profiles at increasing Λ (values shown in the plot); ν = 0.1,
Γ0 = 1.0 and η = 1.0.

steady-state travelling waves. Figure 15 presents representative travelling waves for
the values Λ = 0.1, 1.0, 5.0. The results show that the travelling wave amplitudes and
speeds increase monotonically with increasing Λ.

Finally, we discuss briefly solutions for Λ < 0 starting with the time-periodic
TP5 solutions corresponding to Λ = 0, ν = 0.1, η = 1 and Γ0 = 1, as above.
The behaviour follows the dynamics for Λ > 0 (see table 2), but the windows
of the different attractors are not delineated as well. For example, we find time-
periodic TP5 solutions for −0.0025 � Λ � 0 and bimodal travelling waves for
Λ � −0.004.

The general features of the monotonically increasing amplitudes and of the
travelling waves as |Λ| is increased have also been observed. A notable difference is
that for Λ < 0 the travelling waves have positive wave speeds. Our results indicate
that the speeds of the travelling waves are asymptotically the same at large |Λ|, the
difference being the sign of the wave speed. A heuristic argument that confirms this
follows from (5.6) written in a Galilean frame of speed c, say

−cHz + HHz + 2
Λ√
ν
Hz − Λ

√
ν

6
Hzzz + Hzz + νHzzzz + Γzz = 0. (6.6)

When Λ � 1, the KS terms Hzz + νHzzzz and the surfactant term Γzz are of lower
order, and the equation appears to represent travelling waves of the Korteweg–de
Vries equation, to the leading order (the scaling H ∼ Λ is implied). The symmetry of
travelling waves of the KdV

H → −H, Λ → −Λ, c → −c (6.7)

is consistent with the numerical observations above. We emphasize that this argument
is heuristic, and a more complete computational and asymptotic study for large
|Λ| is necessary.
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7. Conclusions
The problem of the nonlinear stability of CAFs with surfactant-laden interfaces

has been addressed analytically and numerically. We have developed an asymptotic
theory, in the thin annulus limit, that captures the first stages of nonlinear spatio-
temporal dynamics. The asymptotic development is based on identifying canonical
nonlinear regimes, in which consistent asymptotic models are possible if the initial
surfactant concentration is chosen appropriately. (Scaling regimes outside the ones
characterized here lead to linear dynamics as studied in detail by Wei & Rumschitzki
2005.) In particular, the analysis holds in the dilute surfactant concentration limit
and for high Marangoni numbers.

Extensive numerical experiments have been carried out to classify the dynamics
over a wide range of parameters. In the absence of viscosity differences we find that as
ν decreases or equivalently as the size of the system increases, the solutions are mostly
steady-state travelling waves with successively higher modal characteristics – that is
the basic spatial period decreases as ν is decreased. Windows supporting steady-state
travelling waves are separated by narrow windows (in ν) which produce time-periodic
travelling waves; these are solutions which reproduce the original profile after one
time period of oscillation but shift horizontally. A summary of typical results for
the case in which Λ = 0, η = 1, Γ0 = 1 is given in table 1. We see that successive
steady-state travelling wave windows have their spatial period successively halved. We
have also established that these solutions are asymptotically self-similar as ν decreases
and have shown how a 2π spatially periodic wave generates waves of period 2π/N

(where N is an integer) from higher windows (see figures 10, 11 for example).
The effects of varying the dimensionless surfactant diffusion coefficient η has also

been studied in the absence of viscosity differencers. Intuitively, we expect that for
large η, strong diffusion will make the surfactant distribution uniform and thus
remove Marangoni effects, so that the dynamics are similar to the clean case. Our
results show that if η is small the solution is time-periodic with four maxima and
minima in the time series of its energy, for example. For larger η complex dynamics
develop with intervals of time-periodic solutions separated by chaotic attractors (see
figure 13 for example). The expected agreement to the dynamics of the clean case
occurs when η is larger than about 20 as is shown in figures 13 and 14.

When viscosity differences are present (Λ �= 0), the nonlinear evolution equations
contain non-local terms which can be purely dispersive. It has been shown by
Papageorgiou et al. (1990) and Smyrlis & Papageorgiou (1998) that such dispersive
effects act to suppress chaotic dynamics, instead giving travelling wave pulses. We
have studied such phenomena in the presence of surfactant, and the results of a large
number of numerical experiments are given in § 6.2 and table 2. It is found that as
Λ increases through positive values, a period-doubling route to chaos takes place
with chaotic oscillations setting in by Λ = 0.0023. Further increase of Λ supports
dynamics which are chaotic with regions of time-periodic solutions with different
characteristics. The largest computed Λ values that produce chaotic dynamics are in
the range 0.0402 � Λ � 0.0404. At Λ = 0.0405 the solution is time-periodic with
eight maxima and eight minima in the energy-norm time series. A further increase
in Λ produces a reverse Feigenbaum cascade, with a strongly attracting bimodal
steady-state travelling wave window for Λ � 0.074. Representative profiles in the
travelling wave window are depicted in figure 15 for Λ = 0.1, 1.0, 5.0. The amplitudes
of the waves are seen to increase with Λ, and so do the wave speeds. When Λ < 0
(i.e. m > 1, implying that the film is more viscous than the core), we find that the
direction of the travelling waves changes and that the speeds are asymptotically equal
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and opposite at large |Λ|. A heuristic explanation of this is also presented and is based
on the fact that the leading-order system at large Λ is similar to the Korteweg–de
Vries equation.

As a representative physical example we consider oil–water displacement in porous
media. Following Wei & Rumschitzki (2005) we consider an oil film with viscosity
μ2 = 10 cP surrounding a water core with μ1 = 1 cP giving m =10. Other representative
values are σ0 = 10 dyne cm−1, a tube diameter R2 = 100 μm, a slug velocity of 1 cm s−1

or less and an insoluble surfactant concentration in the range 10−12 to 10−10 mol cm−2.
Using a typical value for Γ∞ = 10−9–10−10 mol cm−2 (Chang & Franses 1995) gives an
estimate for our dimensionless initial surfactant concentration Γ0 = 10−3–1 as required
by (3.13) and (3.20)–(3.22). Other dimensionless parameters are as follows: Re1 is 1 or
less; Ca ∼ 10−2; and Ma is in the range 2.5 to 250. Since Ca in the example is small,
for coupling between film and core the theory demands very small values of ε (see the
comment following (3.9)). It follows that for values of ε greater than about 10−2 the
present theory is applicable by taking Λ = 0 (i.e. no coupling between core and film).
Our numerical computations indicate that steady-state travelling wave solutions can
exist in the presence of surfactants.

A second example arises in lubricated pipelining and the experiments of Aul &
Olbricht (1990). The experiments are performed in glass capillary tubes of circular
cross-section with outer radius R2 = 27 μm. The annular fluids used are UCON oils
with a range of different viscosities μ2 = 1.70, 0.79, 0.19 P, and the core fluid is water
with viscosity μ1 = 10−2 P. (The fluids are chosen to be of almost equal densities.)
Several experiments are reported (for example table 2 of Aul & Olbricht 1990), which
have film thicknesses R2 − R1 = 1.8, 1.6, 1.0 μm, respectively, with corresponding
viscosity ratios m =173, 80, 19 and Capillary numbers Ca = 0.022, 0.010, 0.0024.
The corresponding values of our dimensionless parameter ε =(R2 − R1)/R1 are
0.0714, 0.063 and 0.0385. The surface tension coefficient is σ0 = 3.5 dyne cm−1, and the
Reynolds numbers based on the core fluid (as in the present study) for the experiments
were always smaller than 0.019; the parameter J introduced in (2.21) is of order one
and approximately equal to 94.5. Aul & Olbricht (1990) observed instability for all
systems and the eventual evolution of the system to a nonlinear travelling wavetrain
of axisymmetric lobes or collars which are spaced periodically along the tube. (The
reader is referred to figure 4 of Aul & Olbricht 1990.) As in the previous example the
values of Ca are smaller than the canonical scaling Ca = mε (see (3.9)), and this implies
that the film and core dynamics decouple, and the appropriate mathematical model
developed here has Λ = 0. The measured wavelengths were approximately 225 μm
which corresponds to a dimensionless wavelength of approximately L =8.9. This can
be used to estimate the value ν = π2/L2 ≈ 0.125 to be used in the evolution equations
(5.4) and (5.5), along with Λ = 0. In the absence of surfactants it has been shown by
Smyrlis & Papageorgiou (1996) that for ν =0.125 the dynamics of the KS model are
attracted to a chaotic temporal state. The numerical results of the present study show
that surfactants on the whole tend to organize such dynamics into travelling wave
pulses. It is not possible to quantify the effect of surfactants on the experiments of
Aul & Olbricht (1990), but it is reasonable to assume that they were present at least
as trace impurities, a limit which is covered by our theory. We also emphasize that
the pinching of the core fluid reported by Aul & Olbricht (1990) is a fully nonlinear
phenomenon and beyond the reach of our weakly nonlinear theory.
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